If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-6x-50=0
a = 5; b = -6; c = -50;
Δ = b2-4ac
Δ = -62-4·5·(-50)
Δ = 1036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1036}=\sqrt{4*259}=\sqrt{4}*\sqrt{259}=2\sqrt{259}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{259}}{2*5}=\frac{6-2\sqrt{259}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{259}}{2*5}=\frac{6+2\sqrt{259}}{10} $
| 6(4x+8)+16=10x-8+15x | | (3x-7)+55+(x+20)=180 | | -2x²-7x+4=0 | | 3=r/33 | | -5+7k=58 | | 2x÷5=8÷7 | | 8.15=y-0.45 | | 0.3x+6.5=-0.2x+29 | | 0.3x+8=-0.2x+29 | | 0.3x+7=-0.2x+29 | | 0.3x+7=-0.2x+30 | | 4x+7=-0.2x+30 | | 4x+7=-0.2x+3 | | 4x+7=-2x+3 | | 8=3k=2 | | 5(1.026)^(x)=6 | | (-2x^2)-10x+12=0 | | 6c^+23c+7=0 | | 29^-3a-14=0 | | P=3+-4r | | 9x^-47x+44=0 | | 4+5x-1=34 | | 2x^+11x=-12 | | 3x+4x=104 | | x+60÷x=4 | | 12(3+h)-9h=24 | | 3v+2(v+5)=-30 | | 6x/5-7=4x | | 2w+8(w-8)=26 | | 16=2(u+5)-4u | | Y=2x+125000 | | x=1000-500*2 |